Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jun-Qing Chen,^a Pu-Zhou Hu,^b Jian-Ge Wang,^b Gui-Rong Qu^a and Bang-Tun Zhao^b*

^aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China, and ^bDepartment of Chemistry, Luoyang Normal University, Luoyang 471022, People's Republic of China

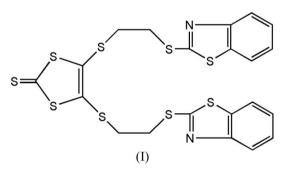
Correspondence e-mail: zbt@lynu.edu.cn

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.004 Å R factor = 0.037 wR factor = 0.092 Data-to-parameter ratio = 19.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The crystal packing of the title compound, $C_{21}H_{16}N_2S_9$, involves weak intermolecular $C-H \cdot \cdot \cdot S$ interactions and interplanar $\pi-\pi$ stacking, generating a three-dimensional supramolecular structure.

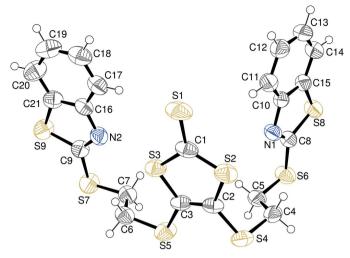

sulfanyl}-1,3-dithiole-2-thione

4,5-Bis{2-[(benzothiazol-2-yl)sulfanyl]ethyl-

Received 17 October 2006 Accepted 30 October 2006

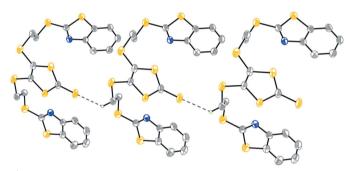
Comment

Tetrathiafulvalene (TTF) and its derivatives are the subject of intense interest in materials chemistry, crystal engineering and supramolecular chemistry (Nielsen *et al.*, 2000; Segura & Martin, 2001; Jeppesen *et al.*, 2004). 1,3-Dithiole-2-thiones, important precursors of TTF derivatives, have also attracted attention (Chen *et al.*, 2005; Fabre, 2004). Considering the potential applications of thiazole compounds in the area of pesticides, medicinal and coordination chemistry (Huang *et al.*, 2004; Zheng *et al.*, 2005), we have aimed to prepare a new family of TTF derivatives bearing thiazole groups. The title compound, (I), (Fig. 1), an important precursor to TTF derivatives, was prepared by the reaction of 4,5-bis(2-bromo-ethylsulfanyl)-1,3-dithiole-2-thione and 2-mercaptobenzo-thiazole in the presence of NaOH.

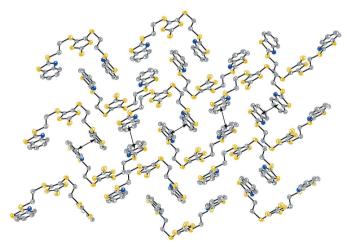


Both the benzothiazole ring systems are almost planar, making a dihedral angle of 69.19 (8)° with each other. The N2 benzothiazole ring mean plane is almost coplanar with the central 1,3-dithiole-2-thione mean plane [dihedral angle = $2.25 (9)^{\circ}$], but the N1 mean plane is substantially twisted with respect to the central ring [dihedral angle = $67.00 (9)^{\circ}$].

In the crystal structure, molecules of (I) form chains by way of weak intermolecular C–H···S interactions (Jia *et al.*, 2006) with the methylene groups (Fig. 2, Table 1). In addition, π – π stacking interactions involving adjacent benzothiazole ring planes occur, with centroid–centroid distances of 3.673 and 3.919 Å (Hunter & Sanders, 1990) (Fig. 3).


Experimental

© 2006 International Union of Crystallography All rights reserved A sample of 4,5-bis(2-bromoethylsulfanyl)-1,3-dithiole-2-thione (1.05 g, 2.5 mmol) was added to a solution of 2-mercaptobenzothia-


Figure 1

The molecular structure of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Figure 2

Detail of (I), showing the connectivity of molecules into a chain by way of $C-H \cdots S$ interactions (dashed lines). H atoms have been omitted.

Figure 3

Detail of (I), with interplanar $\pi - \pi$ stacking interactions drawn as double arrows. H atoms have been omitted.

zole (1.72 g, 10 mmol) and sodium hydroxide (0.41 g, 10 mmol) in tetrahydrofuran solution (100 ml). The resulting solution was heated under reflux for 24 h under an N2 atmosphere. After cooling, the solvent was removed in vacuo and the residue was recrystallized from CHCl₃/CH₃OH (5:1) to obtain the title compound. Yellow plate-like crystals of (I) suitable for X-ray measurements were obtained by slow evaporation of an ethanol solution at room temperature over a period of one week (yield: 81%; m.p. 357 K).

Crystal data

 $C_{21}H_{16}N_2S_9$ $M_r = 584.90$ V = 1258.0 (3) Å³ Z = 2Triclinic, $P\overline{1}$ $D_x = 1.544 \text{ Mg m}^{-3}$ a = 9.4940 (11) ÅMo $K\alpha$ radiation b = 10.7870 (13) Å $\mu = 0.81 \text{ mm}^{-1}$ c = 13.8470 (17) ÅT = 291 (2) K $\alpha = 110.536 (1)^{\circ}$ Plate, vellow $\beta = 105.588 (1)^{\circ}$ $\gamma = 93.947 (1)^{\circ}$

Data collection

Bruker APEX2 CCD diffractometer (i) scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.769, \ T_{\max} = 0.915$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.092$ S = 1.015510 reflections 289 parameters H-atom parameters constrained

$0.34 \times 0.23 \times 0.11 \text{ mm}$

10333 measured reflections 5510 independent reflections 3908 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.017$ $\theta_{\rm max} = 27.5^\circ$

 $w = 1/[\sigma^2(F_0^2) + (0.0354P)^2]$ + 0.384Pwhere $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ -3 $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^2$ $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6A\cdots S1^{i}$	0.97	2.83	3.482 (3)	125

Symmetry code: (i) x + 1, y, z.

All H atoms were positioned geometrically (C-H = 0.93-0.97 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: APEX2 (Bruker 2004); cell refinement: APEX2; data reduction: SAINT (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker 2004); software used to prepare material for publication: SHELXTL.

The support of this work by the Natural Science Fundation of Henan Province (grant Nos. 2004601012 and 0511020100) is gratefully acknowledged.

References

Bruker (2004). APEX2 (Version 1.027), SAINT (Version 7.12a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, T., Liu, W.-J., Cong, Z.-Q. & Yin, B.-Z. (2005). Chin. J. Org. Chem. 25, 570-575.
- Fabre, J. M. (2004). Chem. Rev. 104, 5133-5150.
- Huang, Z., Du, M., Song, H. B. & Bu, X. H. (2004). Cryst. Growth Des. 4, 71-78

Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.

Jeppesen, J. O., Nielsen, M. B. & Becher, J. (2004). Chem. Rev. 104, 5115-5131. Jia, C., Liu, S. X., Ambrus, C., Neels, A., Labat, G. & Decurtins, S. (2006). Inorg. Chem. 45, 3152-3154.

Nielsen, M. B., Lomholt, C. & Becher, J. (2000). Chem. Soc. Rev. 29, 153–164.

- Segura, J. L. & Martin, N. (2001). Angew. Chem. Int. Ed. 40, 1372–1409. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zheng, Y., Li, J. R., Du, M., Zou, R. Q. & Bu, X. H. (2005). *Cryst. Growth Des.* **5**, 215–222.